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In this paper we present a new model for flow in fractured porous media. We
formulate our model in terms of a coupled system of boundary integral equations and
present an efficient procedure for solving the equations using the boundary element
method. In the new model, the flow in the matrix is governed by the usual Darcy law
for porous media, with the fractures being treated as planar sources embedded in the
matrix. The flow in an individual fracture is governed by a two-dimensional Darcy
law (as in a Hele—Shaw cell), with an associated planar sink distribution. The essential
feature of this approach is that the fractures are treated as special planes rather than
narrow-gap voids. The error in the resulting system of equations is on the order of
an intrinsic dimensionless parameter (the ratio of the fracture gap size to the scale
of the volume under consideration). We also describe how we adapt the new model
to compute effective grid block permeabilities. This was the principal motivation
behind the development of the new model. Using effective grid block permeabilities
to model flow in fractured oil and gas reservoirs is a much more efficient process
than modeling the flow when every fracture is precisely represented. We present
some numerical examples that illustrate the new flow model and how it is used to
model flow in a reservoir. © 1998 Academic Press

Key Wordsboundary integral formulation; effective permeability; fractured porous
media.

1. INTRODUCTION

The macroscopic behavior of fluid flow in porous media is well known to be descrik
by Darcy’s law. The porous medium comprises a matrix of solid material with an incluc
distribution of pores. The pores make up the so called void-space for the medium an
such, they may contain and conduct fluid. If the pores form connected pathways, the ma
will be permeable and the manner in which the pores are connected will determine
tensorial permeability of the medium. It has been well established that the local permeat
tensor is always symmetric (cf. Bear [1]).
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FIG. 1. A typical cross section through a region of fractured porous rock; (a) real representation of frac
shape, (b) idealized representation of fracture shape.

In many porous reservoirs, it is not unusual for the rock to become fractured at some ¢
in its history. This can happen in a number of ways, for example, the fractures may be ca
by nearby seismic activity or through local deformation of the strata containing the por
rock. In Fig. 1a we depict a typical cross section through a region of a fractured reser
The matrix is represented as a shaded region separated by unshaded strips, the fractur
effect of a single fracture is to introduce a new type of void space into the matrix. This r
type of void space is very different from the void space associated with the indigenous p
This is because it extends for a significant distance in two fairly well defined directio
These are the directions that roughly describe the planar shape of the fracture. The ¢
of the fracture in the third direction, the fracture gap, is usually much smaller than
fracture length or diameter, but is still typically several orders of magnitude greater t
the pore size. It follows, that the presence of a single fracture will significantly imp
the local permeability in the neighborhood of the fracture. Consequently, the performe
and recovery rates, for fractured oil and gas reservoirs, can be expected to be signific
influenced by the interaction of the fracture system with the porous rock. Unfortunat
this type of interaction is very poorly understood at the reservoir scale. In order to be
understand this type of interaction, we need to be able to model the flow through a re
like that depicted in Fig. 1a. This is certainly possible, so long as the shapes of the fraci
are known. However, we usually only have information about the general properties of
fracture shape. Most often this entails information about the statistical variation of quant
such as the fracture gap, fracture length, fracture orientation and so on. To accomm
this information, fractures are idealized as planar voids inside the matrix. In Fig. 1b
depict the idealized cross section corresponding to the cross section of Fig. 1a. In
planar void the fluid flow can be modeled as being equivalent to the flow between a
of parallel plates as in a Hele—Shaw cell (cf. Homsy [2]). This implies that the flow in
individual fracture is essentially two-dimensional.

A much more insurmountable restriction, when modeling flow in fractured reservoirs
that there are usually too many fractures to be explicitly included in a flow model. One of
current approaches for circumventing this problem relies on ignoring the flow through
matrix rock, so that flow only takes place through connected systems of two-dimensi
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fracture planes. This approach has the drawback that two points in the reservoir ca
communicate with each other unless there is a connected system of fractures joinin
points. A second approach relies on representing the matrix and fracture systems as
of overlapping continua. Unfortunately, in this approach the permeability associated \
the grid blocks in the fracture continuum is based on the assumption that the fract
are infinitely long, orthogonal, and regularly spaced. Real fracture systems do not ap
to have these properties. Moreover, recent field characterization studies (cf. Chiles
Laubach [4], and Lorenz and Hill [5]) have shown that fracture systems are very irregt
often disconnected and may occur in swarms. To include such complex features in a
model clearly requires a new modeling approach.

The approach we propose is to replace each fractured grid block with a grid block tha
an equivalent effective, or homogenized, permeability. The effective grid block permeab
should be computed so as to take into account the geometry of the actual fracture sy
in the grid block. In this way, the effective grid block permeability will retain informatiol
about the complexity of the fracture system that was initially contained in the grid blo
It is acknowledged that in reservoir simulation the homogenized fracture—matrix sys
may lead to imprecise predictions of quantities such as breakthrough times. Howev
should be remembered that even if an exact calculation were possible, a precise compu
of the breakthrough time would require detailed knowledge of the actual fracture syst
Such detailed knowledge is seldom, if ever, available. Consequently, if is felt that, on
average, the homogenized fracture—matrix system will provide meaningful prediction
the important quantities in reservoir simulation.

In Fig. 2 we depict a grid block containing a typical distribution of embedded fractur
The effective permeability for the grid block will be a tensor quantity of the form

Kxx ny Kxz
K= Kyx Kyy Ky; |. Q)
Kzx sz Kzz

We assume that the effective permeability is the tensor that relates the average fluid vels
U, to the average pressure gradiehthrough

U=-KJ, (2
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FIG.2. Agridblock may contain several fractures as depicted. These may be randomly oriented, may inte
with one another, and may also terminate inside the grid block.
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whichis just Darcy’s law for the homogenized grid block. The average velocity and pres:
gradient are volume averages of the actual velocity and pressure gradient in the grid b
Clearly, ifJ = (1,0, 0)T then the average velocity is

U = —(Kxx, Kyx, K20 T; (3)

i.e., the entriesin the first column & correspond to the components of the average veloci
Similarly, by successively taking the average pressure gradient parallel to the unit ves
(0,1,0)" and(0, 0, 1)" (and computing the average flow) the remaining two columns
K can be determined.

Effective permeabilities have been used in other situations to scale-up subgrid pe
ability heterogeneities (cf. Durlofsky [6]). Periodic-type boundary conditions were usec
these instances to compute the fine scale flow through the grid block subject to an imp
average pressure gradiedt, The components of the tenskrwere deduced by varying
the direction ofJ, computing the resulting average velocity and then employing (2). (/
we have already pointed out, the component& @afin be readily deduced by successivel
choosing] to be parallel to each of the three coordinate axes.) This approach for compu
effective permeabilities was shown by Bge [7] to yield a symmetric effective permeabi
tensor for space filling subgrid heterogeneities. To illustrate what is meant by periodic-
boundary conditions, we need to introduce some notation: sughcmed S, are two op-
posing faces of the grid block and thatepresents the position vector of an arbitrary poir
in the grid block. Periodic-type boundary conditions imply that on the surfacesdS;
the fluid pressurep, and its normal velocity - n, satisfy

(p—x-IDls =(p—x-Js, %)
u-n)ls, = —U-n)s,. (6)

In Appendix A, we consider the extension of Bge’s analysis to the situation of a grid bl
containing subgrid permeability heterogeneities in the form of fractures. We go on to s
that this extended analysis implies a symmetric effective grid block permeability tensol
our new modeling approach.

Clearly, the machinery for scaling up subgrid permeability heterogeneities is alre
quite well established, albeit not for fractures. One of the main ingredients is an apprc¢
for computing the fine-scale flow through the heterogeneous grid block. The remail
of this paper is concerned with developing and adapting an efficient model for compu
the fine scale flow through fractured grid blocks. In Section 2 we describe the underl
details of this new model, its formulation in terms of a coupled system of boundary inte
equations and the solution of that system using the boundary element method. In Sec
we present some numerical results illustrating different applications of the new flow mo
along with some results showing how effective grid block permeabilities can be use
finite difference simulations of fractured reservoirs. Finally, we conclude with a summ
of our main results.

2. BOUNDARY INTEGRAL EQUATIONS

In this section we derive the boundary integral equations used in our model. Our n
assumptionis thatthe fracture gap is much smaller than any other length scale in the pro
This is a standard assumption when modeling fluid flow through fractures. It permits
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fracture flow to be equated to the two-dimensional flow between a pair of parallel plates :
a Hele—Shaw cell. This, in turn, leads naturally to a system of boundary integral equat
(cf., Rasmussemt al. [8]). We label these equations as the basic or original system
boundary integral equations and present them in the first subsection that follows. Ir
second subsection we take further advantage of the small fracture gap size to derive ar
system of boundary integral equations which is more compact than the original system
this new system of equations that forms the core of our model. In our last subsection of
section we describe the boundary element solution procedure for our system of equa
We also describe some steps that we employed to make the solution procedure even
efficient.

2.1. The Basic Model

In the basic model the matrix and the fractures are treated as separate systems t
a common interface. This common interface is made up of those parts of the frac
boundaries that are contained in the matrix. Forithdracture, we identify a front planar
surface byF.", a back planar surfacg™ and a lateral boundarfyP. It is also convenient
to identify the center plands;, in the fracture. This plane is parallel to the front and bac
surfaces. We will assume that there is a two-dimensional coordinate system for frac
i defined onF;. If there areN fractures contained in the matrix, the common interface
Ui’\':l(Fﬁr UF,~ UFP). Together, the matrix and the fracture system occupy a voMiriiéie
part of V occupied by the matrix is denoted by, and the part occupied by thth fracture
is denoted by;. The gap size for fractureis denoted byh; and is the distance between
the faces=" andF,". It is assumed to be much smaller than any other length scale in
problem. The unit normal;, to the central plan&; is also normal td:i+ andF,~, and
points fromF;~ to F*. (In what follows, the boldface lettexsy, andz refer to the position
vectors of points iV and as such will have three components. Boldface Greek letters, s
as¢ and(, refer to position vectors of points on one of the fractufgsreferenced with
respect to the two-dimensional coordinate system on that fracture; i.e., they have only
components.)

Because the fracture gap is small, we assume that for any fracture the flow is equivale
the flow between a pair of parallel plates. More precisely, the flow in the fracture is assul
to be represented by an average fluid velocity and pressure. This average is over the ¢
the fracture so that the average fluid velocity and pressure represents a two-dimensiong
field. (This is the same type of simplification that is adopted in the analysis of flow betw:
infinite parallel plates, as in a Hele—Shaw cell; cf. Homsy [2] for more complete detai
Consequently, if in fracturethe fluid velocity isu; and its pressure ig; then we have

Ui () =~k Vpi () (7a)
— 1 b o
Vou© =1 ©+Y [ doie-od©. (7)
! j=17"i

whereQ; (¢) represents the source strength of the fluid flow from fragtucethe matrix.
The fractures may intersect with each other, which provides a source or sink for fluid f
at the intersection line. This possibility is accounted for by the line-integral terms appea
on the right-hand side of (7b). It is assumed that theremarmtersections on fracturg
which are located along the lingk!, j =1,...,m;} and have corresponding strength:
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{qij &), j=1,...,m} (dl represents the line element). The fracture permeability is giv
by the usual formula for parallel plate flow
ki = h?/12 (8)

The differential operatoﬁ is the restriction oV to the two-dimensional coordinate sys-
tem of the fracture anE(-) is the two-dimensional Dirac delta function. For an individue
fracture the boundary &F; . This either marks the location where the fracture gap size
pers to zero or where the fracture intersects the boundary of the common Véluméhe
former case there can be no flow into the matrix at that location, so the appropriate bour
condition is to set the normal flux to zero. In the latter case a normal flux is permitted sc
appropriate boundary condition is to set the fracture pressure equal to the pressure
(The normal flux in this case depends on the pressure gradient in the fracture, so we
to compute it in the solution process.) Consequenti)ifis the boundary of the common
volumeV, the boundary conditions on the edge of the fracture are

ni-ui(§) =0 if £ is insideaV (9a)
pi(§) = pav if isonaV, (9b)

where pyy is the pressure on the boundary. (As we will see later, when periodic-type
boundary conditions are used 6N, the boundary condition given by (9a) is used, eve
though part ob F; may fall onaV.)

In the matrix, the fluid is assumed to obey the usual Darcy’s law and to be incompress
Consequently, if the fluid velocity in the matrixis, and its pressure i, then we have

Un(X) = —kmV pm(X) (10a)
V -un(x) =0, (10b)

wherex, is the matrix permeability. On the external boundagy, pm, or some combination
of uy and pr, will be prescribed. The quantity specified generally depends on the probl
being solved. On the common interface the pressure is the fracture pressure and the ve
depends on the source strength of the fracture,

Pm(X5) = P (E(X)) (11a)
(Um(%") — Um(X)) - M = Qi (£(6H)), (11b)

where it is understood that™ andx;” are points on the front and back surfaces of th
fracture andt (x*) is the corresponding point in the two-dimensional coordinate system
the fracture.

Using Green’s identity and the fundamental solution for the two-dimensional Laplac
we readily find the boundary integral equation for itfefracture,

(€—9 N

ey P©d©

ap;
o pi (&) = —/aF In(¢ — €22 dl (©) +

1 _ 19 et
i [ In1C—€)Qi©) dA©) Ki;/qmc £d O dI©,

(12)
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whereg; is the angle subtended Iy at £ andd.A is the area element. Repeating thi:
procedure for the matrix equations we arrive at the boundary integral equation for the m
pressure,

1 (y =% - n(y)
= g B [ 9 e
Cm Pm(X) /V |y—x| an (y) ) v TE Prm(Y) )
g (y —x) - n(y)
B dA o o3 Mm dA
Z/v, ly — X| 8n on W dAW - IX; vy =X pm(y) dA(Y),

(13)

wherec, is the solid angle subtended by the matrix boundagyat the pointx.

The boundary integral equations given by (12), (13), and the interface conditions (’
and (11b) are fairly well known. Rasmussetral. [8] used these equations in a boundar
element code to compute flow through a rectangular block containing a simple fract
Accuracy problems were reported for fractures with small gaps, unless a fine mesh
used on the front and back surfaces of the fracture. The fine mesh permitted acc
resolution of differences between the unknowns at the collocation points on the front
back surfaces of the fracture. As we will see in the next section, this problem is circumvel
by modeling the fractures as planar sources within the matrix.

2.2. The New Model

The fundamental difference between our formulation and the original formulation is t
we treat the fractures as planar sources in the matrix. As a result, the matrix and fra
systems are coupled from the outset. The incompressibility relation, for the matrix velo
which was formerly given by Eq. (10b), becomes

N .
Vun() =Y /F Qi(€@)s(x—2)dA (@, (14)
i=1 i

whereé (+) is the three-dimensional Dirac delta function. Using (14), the boundary integ
equation for the matrix pressure (formerly given by (13)) becomes

N =% -ne)
CPm(x) = / o X| Pryydam + / O b A ()

_Z / —Q. €y dAY), (15)

wherec is the angle subtended by the boundaryditx. The system of boundary integral
equations given by (12) and (15) is more compact than that given by (12) and (13).
integrals corresponding to the fracture now only comprise single layer potentials. Additi
ally, there is only one single layer potential type integral for each fracture, as oppose
two for the original formulation (one each for the back and front surfaces). Consequel
the number of integrals required to account for the fractures is reduced by a factor of
by our new formulation. An increase in efficiency of the new approach over the old follo
automatically, since a significant portion of the total computation time for the bound
element method is spent evaluating the integrals during equation assembly. Moreover,
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there are fewer unknowns required to describe the fractures, the size of the matrix v
system will be much smaller than for the original formulation. This in turn affects the so
tion time and has implications for storage requirements. The accuracy of the new equa
depends on the difference between Egs. (13) and (15). In Appendix B we show that
can be written as

(Cm+Ct)pX) = /

av |y = X[ an
1

km JE Yt —X|

ap —X) - _
Py day) + / V=X 0 ) dA )
av 1y —X]|

Q&) dA(yr) + O(h) + O(km/xk1), (16)

wherec; is the solid angle subtended by the boundary of the fracture (recall that in (13)
fracture is treated as a three-dimensional structure). The “new” pressure tisrdefined
to be the matrix pressure at points in the matrix and the fracture pressure at points ir
the fracture. Equation (16) states that (15) is asymptotically equivalent to (13) fortsma
i.e., small fracture gap sizes.

Finally, very fine meshes on the fracture are not required since differences betwee
unknowns on the front and back surfaces of the fracture are “built-into” the new formulati
(Rasmusseant al. [8] stated that the separation between mesh points on the front or b
surface of the fracture should be less than 10 times the gap size. For the type of prok
we intend to investigate the gap size is on the order of 104b0@nd the “diameter” of a
fracture plane is on the order of 1 m. For such a problem, the original formulation wo
require about 100& 1000 mesh points on the front and back surfaces of the fracture!)

2.3. Boundary Element Solution of the Model Equations

In Section 2.2 we showed that the equations describing our model could be very conc
expressed using the boundary integral equations (12) and (15). The boundary conditio
the external boundary have been left quite general up until this point. The boundary cc
tions depend on the particular type of problem being solved. In the introduction we descr
how we intended to use this new model for computing effective grid block permeabiliti
We also described what was involved in specifying periodic type boundary conditions
that these were the most appropriate boundary conditions to use for computing effe
grid block permeabilities. This has implications for the boundary conditions applied at
boundary of a fracture. If a fracture boundary coincides with the grid block boundary, t
it should be treated as if the fracture terminates at that location, i.e., the normal velc
is zero and the boundary condition given in (9a) is used on each boundary of the frac
By imposing such a condition, we can establish a truly periodic system where condit
imposed on opposing faces of the grid block are the same as those expressed in (5) al
So now we can state that the system of equations we wish to solve are given by (12
(15), with boundary conditions for the matrix given by (5) and (6), and boundary conditic
for the fracture given by (9a).

When solving this system of equations using the boundary element method, we
rectangular elements on the grid block boundaries or fracture plane surfaces, and |
elements on the fracture edges or fracture intersections. Accordingly, we use either i
or bilinear basis functions to approximate the unknowns. The nodes in the mesh are lo
at the ends of the linear elements and at the corners of the rectangular elements. /
geometrical corners and edges we permit multiple nodes to occupy the same location, v
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helps with the bookkeeping. When collocating the equations we assume the colloc:
points coincide with the nodal points except at geometrical boundaries and corners
the geometrical boundaries and corners, the collocation points are moved a certain an
inside their respective elements. This is like what happens in the semi-discontinuous ele
approach, except in that case the nodal points are also moved away from the geome
boundaries and corners (cf. Subtaal.[9] for a complete description). Our approach neatl
circumvents problems with collocating the equations at points corresponding to a do
or triple node.

The unknown functions in the formulation are the pressure and normal velocity on
grid block boundary, the pressure and source strength on the fracture planes, the pre
and normal flux on the fracture plane edges, and the line source strengths at the fra
intersections. On account of the periodic boundary conditions, we can identify a sir
unknown at each point of the grid block boundary. Suppose, for the sake of illustration,
N; is a nodal point on one face of the grid block and that the corresponding nodal poin
the opposing face of the grid block . At N; we choose the pressure to be the unknow
and atN, we choose the normal velocity component to be the unknown. The periodic-t
boundary conditions imply that the pressur&laican be expressed in terms of the pressul
at N; and the average pressure gradient. In a similar way the normal velocity compo
at N; can be deduced from that Bk and the average pressure gradient. In any case
can define a vector of unknowrld, where each component represents a value of either 1
pressure or the normal velocity at each nodal point of the grid block boundary. The vect
unknownsQ holds the nodal values of the source strength at the nodal points of the frac
planes and the vector of unknowps holds the nodal values of the pressure. At the nod
points on the fracture plane edges, holds the values of the pressure amgl, holds the
values of the normal component of the velocity. Finajljzold the values of the line source
strengths at the nodal points on the fracture intersectiong gnldolds the corresponding
values of the pressure at the fracture plane intersections.

The matrix vector system resulting from the collocation of our equations has the follow
block-matrix representation:

A1 B O 0 O O U R1
A, B C; 0 0 O Q R>
0 Bs C3 D3 Es3 F3 P _ 0 . (17)
0 0 G Ds O O Pb 0
As O 0 Ds Es O Wtp Rs
0 Bs 0 Dg Eg Fo q 0

For convenience we have grouped the collocated equations into separate parts or block
first block results from collocating the matrix equations on the grid block boundaries :
the second block results from collocating the equations on the fracture plane surfaces
third block results from collocating the fracture equations on the fracture edges. The fo
block equation simply states that the matrix mesh values of the pressure and fracture
values of the pressure must coincide at the fracture edges. The fifth block equation re
from explicitly setting boundary conditions at the fracture edges. The sixth block equa
results from equating the fracture pressures between each pair of intersecting fracture
Fortunately, the size of the matrix—vector system in (17) can be reduced significantl
we choose our unknowns, ith asp(x) = p(x) — x-Jandn - Unp(X) =N - Um(X) + kmn - J
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on the grid block boundary, then it follows tHat = 0. Additionally, we note that the block

D, is just an identity matrix. Furthermore, the block €presents the interpolation of
nodal values on the fracture planes at collocation points on the fracture planes. As ¢
its structure is quite predictable and its inversg! s just as easy to assemble in place ¢
C,. Periodic boundary conditions requires that we treat all fracture edges as being ir
the grid block boundary, from which it follows that;, = 0. Gathering all these conditions
together we can rewrite the matrix—vector system of equations as

A B:1 O ) 0
As Bs F3| | Q|=(Rs], (18)
Ag Bg Fg q Re

where

Az = —(C3—D3Cy) G'A;
Ag =D CsCy A,

Bs = Bs — (C3— D3C4) C;'B;
Bs = Bs + Ds C4 C;'By,

Rs = —(C3— D3Cs) C'R;

Re = Ds C4 C; 'Ry

(19)

Equations (18) and (19) are valid for an arbitrary grid block when periodic bound
conditions are imposed. It is worth noting that if we are processing a number of grid blc
with the same shape, but possibly containing different fracture systems, then it makes
to compute and store& and so effect a further reduction in the effective size of the matr
vector system.

3. NUMERICAL EXAMPLES

In this section we present some examples that illustrate our new model for flow
fractured porous media. First, we present a simple example which establishes thz
effective permeability calculated in our new model is consistent. We do this by show
that the way the effective permeability changes as the included fracture system is ro
can be predicted theoretically. We go on to present a more complicated example, as 1
be encountered when analyzing real fracture systems. The increases in efficiency that
from adopting the new model are clearly demonstrated for such an example.

3.1. Simple Example

Unfortunately, the periodic boundary conditions required for computing the effective ¢
block permeabilities leads to equations that are intractable to analytic methods, eve
very simple geometries. The example we consider here is of a grid block in the shape
unit cube containing a single fracture. The fracture has a length6adifits and a gap of
1.0 x 10~* units. It is vertical and intersects with the top and bottom surfaces of the cu
It is centered at the cube center and is oriented at an anglel@efrees to th&-direction.
The geometry of the cube for a general orientation of the fracture is depicted in Fig. 3.
matrix permeability is set at 1 unit and the fracture permeability0sx21C° in the same
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1.0

1.0

FIG. 3. The geometry of the cube, considered in this example, for a general orientation of the fracture

units. In computing the effective permeability, a boundary element mesh with seven n
points for horizontal edges and three nodal points for vertical edges was used.

As we pointed out above, we were unable to find an analytic solution for this sim
problem. However, we know that effective grid block permeability will depend on tl
fracture orientation so that it takes the form

Kax(@) Kxy(@@) O
K@) = | Ky®) Ky@) 0 |. (20)
0 0 Ku0)

Moreover, if whery = 0 the effective grid block permeability is

Ki 0 O
0 0 Ks

then it follows that the components given in (20) can be written as

Kyxx(0) = K1cog 60 + K, si? o

Kyy(8) = Ky sirf0 + K, cos 6

KZZ(Q) = K3

Kxy(0) = Kyx(8) = (K1 — K3) sinf coss.

(22)

The formulae given in (22) provide us with a useful tool for measuring the consiste
of the variations in the effective grid block permeability. Using the computed values

K1, K2, andK3z (which are 1.3486, 1.0000, and 2.5951, respectively) we plot the theoret
variation of the effective permeability components in Fig. 4. The values of the compone
calculated numerically, are indicated in the plot by unique symbols. Clearly, the numeric
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Ky — - — exact, © numerical
A Ky —— — exact, 4 numerical
K, —— — -exact, X numerical
3.0= K, ————exact, 0O numerical: 3 nodes
x numerical: 5 nodes
[ ; Q ]
2.5- = ﬁ ) 4 a ™
2.0
1.5=
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FIG. 4. A plot of the theoretical variation of effective permeability components, for different fracture orie
tations. The actual numerically computed values are also indicated.

calculated values vary consistently with their theoretically predicted counterparts from (
Two sets of numerical results are presented for the numerically computed compgnent
As indicated in the plot, the more accurate values were computed using a mesh that ha
nodes on the vertical edges, as opposed to the original mesh that had three. The char
the other components of the permeability tensor are too small to be represented in the

3.2. Effect of Multiple Fractures on Effective Permeability

In Section 3.1 we saw that even a grid block containing a single fracture could give
to a tensorial effective grid block permeability (when the fracture was not aligned with «
of the coordinate directions). In this section we illustrate how multiple fractures imp
the tensor form of the effective permeability. Starting off with an initial configuration
two fractures in a grid block, we successively add new fractures and show how the te
form of the effective permeability changes. To simplify the presentation we have chose
represent the different systems as a 2 array of grid blocks as depicted in Fig. 5. The
coordinates of the fracture end points are presented in Table 1 for the upper right grid bl
The coordinates of the end points of the fractures in the remaining grid are obtaine
subtracting (1, 0), (0, 1) or both from the appropriate coordinates in the table. The me
permeability is set at 1 unit and the fractures are assumed to have uniform permeabi
of 1.0e+ 07 in the same units.

The effective permeabilities for this array of grid blocks is depicted in Fig. 6 for
boundary element mesh that had five nodal points on both horizontal and vertical ec
Repeating the calculation with a boundary element mesh which had seven nodal poin
each edge resulted in changes in the principal effective permeabilities that were on the
of only a few percentages. The effective permeability for each grid block is represented
shaded ellipse; the shade represents the vertical permeability and the ellipse shape ce
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FIG.5. A2 x 2 array of naturally fractured grid blocks.

the directional variation of the horizontal permeability, in both magnitude and directi
We see clearly that as each fracture is added the vertical permeability of the grid b
increases, which is to be expected. The shape of the horizontal permeability ellipse fo
initial configuration is approximately aligned with the two fractures in the grid block. F
the next two cases the ellipse changes slightly with the minor axes growing larger. The s
for the final case shows how complicated the interaction of even just five fractures car

3.3. Effective Permeability of Realistic Fracture Systems

In the previous two subsections we looked at over-simplified examples of fracture
tems, which allowed us to illustrate how our new approach works at the grid block level
practice, we envision our new approach being used to process many fractured grid bl
with an effective permeability tensor being generated for each grid block. The effec
permeability tensors will be use as input for a more traditional simulator, which will perr
more realistic simulations of the fractured reservoir.

To illustrate this procedure, we looked at a fracture system generated using statis
data from a naturally fractured, tight gas sand reservoir. The reservoir we chose was i
Mesaverde sandstone in the Piceance Basin (cf. Lorenz and Finley [11]). A tracing ©
outcrop of this sandstone is depicted in Fig. 7 (after Lorenz and Finley [11]). Some of

TABLE 1
The Coordinates of the Fractures in the
Upper Right Grid Block of Fig. 5

Fracture coordinates

(X1, Y1) (X2, Y2)
(2.10, 1.70) (2.50, 1.90)
(1.20, 1.10) (1.80, 1.40)
(2.20, 1.85) (1.30, 1.45)
(1.65, 1.75) (1.80, 1.15)

(1.15, 1.55) (1.85, 1.70)
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Ly
&
&

6.72430 md

3.95510 md major axis = 2.53896 md
m minor axis = 1.26948 md

FIG. 6. The effective permeability for the fractured grid blocks in Fig. 5.

0 feet 25

1
0 meters 8

FIG. 7. Tracing of the fractures in an outcrop of the Mesaverde Sandstone at Rifle Gap in the Piceance |
(after Lorenz and Finley [11]).
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TABLE 2
Statistics for the Fractures of the Mesaverde Fracture System
as Depicted in Fig. 7

Mesaverde fracture statistics

Property Min. value Max. value Avg. value
Length (ft) 2.3 108.0 19.2
Orientations {) -16 13 4
Intensity (ft/ff) 0.48 0.88 0.66

fracture statistics (Lorenz [12]) for this fracture system are presented in Table 2. Additic
information was provided regarding the nature of the fracture terminations: 53% of
fractures were found to terminate at no special location; 35% were found to terminat
T-type intersections; 1% were found to terminate at the end of another fracture; anc
remainder could not be accounted for because of overlying surface features. Using this
we generated the realization of the fracture system depicted in Fig. 8.

The fractured region measures approximately 70 ft by 210 ft. We subdivided the reg
uniformly into a grid of 15 by 30 cells. In our boundary element code, we comput
the effective permeability tensor for each grid block assuming a matrix permeability
2 md and a uniform fracture aperture of 1. We used this permeability information
in a finite difference code to examine flow through the system. This code was based
flux continuous finite difference scheme (cf. Edwards and Rogers [13]) so that we c
effectively use the full tensor information available for each grid block. We also assun
that the top and bottom boundaries of this fractured region were no-flow boundaries
establish flow through the region, we applied an average unit pressure gradient ir
negativex direction by requiring a specific pressure difference between the opposing €
of the region. Using this configuration, we computed the corresponding steady state fl

Figure 9 shows the impact of variations in the effective permeability on the motion
the fluid through the region. The fluid at the right-hand side of the region was matrl
with a tracer at a certain point in time. Three snapshots of the subsequent evolutic
the tracer are presented in the figure. They help to illustrate how fluid moves through
homogenized grid blocks. In the bottom plot of the figure we see that the variations in
effective permeability have had a pronounced and cumulative effect on the flow thro

FIG.8. Fracture realization generated using statistics from the Mesaverde fracture system presentedin T:



FLOW IN FRACTURED POROUS MEDIA 477

FIG.9. Three successive snapshots of the evolution of a tracer through the fracture system depicted in |
The motion of the tracer through the homogenized grid blocks illustrates the general motion of the fluid.

the region. By comparing the concentrations of the tracer, with the fractures in Fig. 8,
see that the tracer flow, and consequently the fluid flow, is primarily determined by
orientation and intensity of fracturing. Clearly, the directional permeability informatic
originally contained in the fracture system, is now contained in the effective permeab
values of the homogenized grid block.

4. CONCLUSIONS

In this paper we have introduced a new approach for computing fluid flow throt
fractured porous media. The model is based on the treatment of fractures as special
planes in the matrix and the resulting equations are solved using the boundary ele
method. The equations in our new model are asymptotically equivalent to a more traditi
model which treats the fractures as rectangular voids. However, in contrast to the r
traditional model, the results from our new model are insensitive to the ratio of the frac
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node spacing to void gap. Additionally, our new method can boast of increases in efficie
resulting from fewer nodes and fewer integral evaluations.

As a practical application, we related the fluid flow results of our new model to t
effective permeability of rectangular grids blocks. Furthermore, we showed that this
block permeability tensor was symmetric if periodic-type boundary conditions were u
inthe boundary integral equations. Inthe boundary elementimplementation, we showed
the full solution could be obtained by solving a significantly smaller system of equations
the examples section, we presented a numerical example that demonstrated that the ef
permeability tensor was being consistently calculated and a second example that sh
how fracture-matrix interactions, as well as fracture—fracture interactions, were impac
the effective permeability tensor.

APPENDIX A: SYMMETRY OF THE EFFECTIVE GRID BLOCK PERMEABILITY

In Section 1, we pointed out that the effective grid block permeability satisfies the
mogenized form of Darcy’s equation, so thal ié the average pressure gradient in the gri
block, then the average velocity is given by

U=-KJ. (A1)

We can identify three fundamental average pressure gradients

1 0 0
{30,929 =3 (o], [2].[0]}. (A2)
1

sothatalinear combination of these willadmitany average pressure gradient. Correspol
to the fundamental pressure gradients, there are three average velocities

K11 K1z K1z
{UPD UP U®} =0 [ Koy |, | Koz |, | Kaa | ¢ (A3)
K31 K32 K33

where we have used numerical subscripts to refer to the compondfitCdéarly, we can
write
Kij = Jo . (KJ(D)
= _JO .y

1 . _
1o, / u dy, A4
V] v (A4)
whereV is the grid block andV| is its volume.
Bge [7] showed that if the grid block was composed of two regidsandV,, which
have tensor permeabilities Kf; andK,, respectively, then the components of the effectiv
grid block permeability are given by

1 . . 1 . .
Kij=— [ vp" (KyvpD)dv+ = [ vp" . (K,vp?)dV, (A5)
VI v, VI v,

which is symmetric whenever the local permeabilities are symmetric. The crucial relat
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required to establish (A5), is that
/ pn.uddA = / POn.ubdA, (A6)
Y Jov

whereP® =x.JO isthe linear pressure profile with constant gradient gived{byEquation
(A6) is a direct result of the periodic boundary conditions satisfieg®Gyandu®.
Unfortunately, when the grid block is composed of a matrix region and a fracture reg
(A5) cannot be used directly to express the components of the effective grid block pel
ability, although the relationship expressed in (A6) is still valid. The main reason is that
fracture permeabilityK ¢, is a two-dimensional tensor, which corresponds to the fact tt
the fracture is effectively two-dimensional. The most convenient way of establishing
correct formula for the componentsKfis to assume that the fracture occupies a region
thickness centered on the fracture plaire We will refer to the corresponding volume as
V¢. This necessitates that the matrix occupies the volMipe-V — V. To preserve the
correct flux through the fracture we redefine the fracture velocity tahge. Note thath
is the actual fracture gap size. After we perform some manipulations on the componer
K we can lett — 0 to get the correct expression for the componeni&.dfising (A4) we
find

Jo h .
Kij = |V| (/ u(”dV—l— ‘/V (f”dV>
m f

—( J<”~u,<TPdV+h/J(“~u(fj)dA)
v F
i( P<i>n.u§g>dA—/ P“)n.ug{)dAJr/ P<i>Q<i>dA)
\ Vi F
i(/ p(l)n u(J)dA / p(l) p('))n u(”dA+/ p(I)Q(J)dA>
Vv i IV
1 @, yd
v Vp - Uy dy
1 [eng .30
+|V|<€ f2 /nf (U], +ud| ) dA- /me(J)dA)
1 . . _ _
= m( | Vp(')-(KmVp(‘))dV+h/FVp(')-(Kpr“))dA>
eng - JO - -
+ T /F ne (U] +ud)] ) dA. (A7)

In deriving (A7) we used (A6) along with the following observations:

(1) u; is based on a two-dimensional velocity field with no component or variati
perpendicular td-,
(2) the average pressureRs) = x - J© which implies that

[P(i)nfug)]Fi _ (PS) + (%)nf .J(i)) (ns .uﬁmFi), (A8)

(3) the source strength @) =[n¢ - uP]E".
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At this point we should remark that (A7) gives the formula for the components of t
effective grid block permeability for the basic or original modet iis replaced byh. In
general K will not be symmetric in this case. However, to get the result corresponding
our new model, we let — 0 to find

1 . . — -
Kij = m(/ vp" - (KnVp?) dV+h/ vp" . (Kivp?) dA) (A9)
v F
which is symmetric so long d§,, andK ¢ are both symmetric.

APPENDIX B: ASYMPTOTIC FORM OF THE BASIC
MODEL FOR SMALL GAP SIZE

In this appendix we show that the new formulation for the matrix pressure, Eq. (15)
asymptotically equivalent to that in the basic model, Eq. (13), for small fracture gap s
For simplicity, assume that we have a single fracture of thicknegsupying a volumé/;
in a porous matrix. As in Section 2.1 we identify three planar surfaces with the fractt
a front surfaceF*, a central plané-, and a back surfacgé . The lateral boundary of the
fracture is denoted bi®. The unit fracture normai; is orthogonal toF and points from
F~ to F*. Although we use a two-dimensional coordinate system attachEdl tm label
points on the fracture we will also assume tRatrefers to a point orf- in terms of the
three-dimensional coordinate system of the matrix. Consequently, at theggoiptthe
fracture source strength is

h h
Q&xy)) = (Um<xf + Enf) - Um(xf - Enf>> Ny
—Km<m<Xf+§nf>—W(Xf—znf>). (Bl)

We will use this expression in what follows. We also define an auxiliary fungtion in
terms of the fracture pressure

P(Xt +nNn¢) = pr(€(X1)), (B2)

wherex; lies on the central pland;, in the fracture and-h/2 <n <h/2. It is worth
stressing, at this point, thg(xy) is the projection ok; + nn; onto the two-dimensional
coordinate system of the central plane. The auxiliary pressure is really the fracture pre:
as a function of position in the three-dimensional coordinate system of the matrix. We
take the three-dimensional Laplacianmfto find that inside the fracture volume we have

V2p(xt +nn¢) = V2pr(£(x))

1
= e Q(&(X1)) (B3)
K

which is a direct consequence of (7a) and (7b). Using Green’s identity, the fundame
solution for the three-dimensional Laplacian and the boundary conditions, we find tha
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auxiliary pressure satisfies

_ (Y —X) - n(y) 1 / 1
= 2 pn(y)d - — d , (B4
Ci P(x) /avf y—x2 P W AW - - v QW) dV(y). (B4)

wheredV is the volume element.
Now we consider the reduction of (13), which we restate for the sake of continuity:

"1 3pm (y —x) - n(y)
m Pm = —yd —— = pm(y)d
o0 = [ =Ty aag)+ [ S0 S pydag)

1 9Pm / (y —x - n(y)
- —TydAy) — [ =———pn(y)dA(y). (B5
AVf |y - X| an (y) (y) aV; |y _ X|3 p (y) (Y) ( )

We immediately see that, according to (B4), the last integral in (B5) can be expresse
terms of the auxiliary pressure and the source strength. A relation for the second last int
in (B5) follows by using the definition of the source strength:

L opn
—(y)dA
Ly mondaw)

1 1 8pm( h )
-7 - M yr+ong ) dA
/F [|Yf—X+(h/2)nf| |yf_x|}anf yr+ SNt ()

" 1 1 9Pm
_ - Py —ni)da
/F Lyf “x— (/20 iyr —xJ an (yf ”f> Or)

1

km JE 1Yt —X]|

NI S

Q&(yr)) dA(yy). (B6)

We will now show that the second integral on the right-hand side of (B4) and the first 1
integrals on the right-hand side of (B6) are eitkih) or O(«km/x1). To see this we make
the simple observation that for arywe have

1
dA
/F yr —x A0

< max

- —  dA
XfEF/F lYf —X¢ +nng| o

</R/2ﬂ rdrdo
“Jo Jo JrZ4p?
<2n(vV/R2+n2—n)
< 27R, (B7)

where(r, 8) are polar coordinates centeredat Ris the radius of the smallest circle (agair
centered at ;) that containg-, andp is the perpendicular distancexfrom F. Using (B7)
we find

1
— dv
/\h Y —X] Q&) dV(y)

< 2rh R(@ng\Q@(xf))]). (B8)
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We also have

1 1
— dA
/p Lyf “xEM/2n1  Iys —xJ oo

_ h / N¢ - (Yi —X+€exng)
21/ lyr —X+eng|?
< 2mh, (B9)

dA )

whereey € [—h/2, h/2] depends om andy . In (B9), the transformation from the integral
term to the term on the right-hand side of the inequality follows by realizing that the integ
is the solid anglé<4n) subtended at by a surface. This surface is that which results fror
a nonuniform distortion of-. The amount of distortion at any point &f is given bye..,
which generally is nonuniform. Using (B9) we find

1 1 apm< h >
+ dA
/F [ny —x+ (h/2n¢|  |ys _XJ yi+ 5ni (yr)

9Pm h
ony (Xf + Enf) > (B10)

< 2nh(max
XfeF

and

1 1 8pm< h >
- - = dA
/F [Wf —x—(/2n¢| |ys _XJ ang i 2nf )

8pm h
an; <Xf — Enf) ) (Bll)

Using (B8) in (B4) and both (B10) and (B11) in (B6), we can rewrite (B5) as

< 2nh<max

XfEF

1 o=0-n
m Mm = Tor Wl am m d
im0 = [ =Ty aag+ [ S0 by daq)

1

va— Q) dA () + O(h) — ¢t p(X) + Olkm/k1). (B12)

Finally, we extend the auxiliary pressure outside the fracture so that it coincides with
matrix pressure

P(X) = Pm(X) (B13)

for x in V. Using the auxiliary pressure we can write

(y X) ney)
—WdAy + [ ———
v an(Y) v) NE

1

(Cm+CH)pX) = /6 p(y) dA(y)

1

yi =X Q&) dA(yr) + O(h) + O(km/k1). (B14)

. —

Besides theD(h) and O(xm/k 1) terms, the only other difference between (B14) and (1¢
is the solid angle term that multiplies the pressure on the left-hand side of both equati
However,cy, + c¢ is the solid angle subtended atby 9V, i.e., ¢y + ¢ =c. In other
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words, (B14) and (15) are the same equation, up to terms of @der and O (xm/x ).

Si

nce (B14) is the transformed version of (B5) it is also the transformed version of (:

Consequently, we can conclude that Eq. (15) is the leading order term in an asymp
expansion of Eq. (13) for smatl.
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